RESEARCH PAPERS

Acta Cryst. (1996). B52, 217-222

Crystal and Magnetic Structure of Piezoelectric, Ferrimagnetic and Magnetoelectric Aluminium Iron Oxide FeAlO₃ from Neutron Powder Diffraction

F. BOUREE,^a J. L. BAUDOUR,^b E. ELBADRAOUI,^b J. MUSSO,^c C. LAURENT^d AND A. ROUSSET^d

^aLaboratoire Léon Brillouin, CE Saclay, 91191 Gif sur Yvette, France, ^bLaboratoire de Recherche sur les Matériaux à Finalités Spécifiques (EA 1356), Université de Toulon et du Var BP 132, 83957 La Garde CEDEX, France, ^cLaboratoire des Matériaux Multiphasés et Interfaces (EA 1357), Université de Toulon et du Var BP 132, 83957 La Garde CEDEX, France, and ^dLaboratoire de Chimie des Matériaux Inorganiques, URA CNRS 1311, Université Paul Sabatier, 31062 Toulouse, France

(Received 16 January 1994; accepted 24 July 1995)

Abstract

The crystal structure of FeAlO₃ has been determined at T = 298 K by neutron diffraction, using polycrystalline samples prepared in a high state of purity. The space group is $Pna2_1$, Z = 8; a = 4.9839(1), b =8.5544(2), c = 9.2413(2) Å. The structure, which is isomorphous to that of FeGaO₃, can be described as a double combination of hexagonal and cubic closed packing of oxygen ions. There are four different cation sites labelled Fe1, Fe2 (predominantly occupied by iron), All and Al2 (predominantly occupied by aluminium). The oxygen environment of All forms an almost regular tetrahedron. The other sites have a distorted octahedral environment, especially irregular for Fe1 and Fe2. The fractions f_i of iron ions over the four cation sites are: $f_1 =$ $0.78(1), f_2 = 0.76(1), f_3 = 0.10(1)$ and $f_4 = 0.34(1)$. Neutron diffraction at T = 30 K reveals a classical Néel ferrimagnetism, the direction of easy magnetization being a, with strong '180° cation-anion-cation' superexchange antiferromagnetic interactions Fe1-O-Fe2 and Fe1-O-Al2 (Al2 being a site occupied by 0.34 Fe). The Néel sublattices are A = Fe1 + A11 and B =Fe2 + Al2. The average magnetic moment per atom is weak $(3.4 \pm 0.3 \mu_B)$ and the spontaneous magnetization at T = 30 K is extremely weak: $0.38 \pm 0.17 \mu_B$ per atom. Piezoelectricity probably originates in the bond arrangement of the four tetrahedral All sites in the unit cell, each tetrahedron being oriented with an Al1-O bond parallel to the polar c axis.

1. Introduction

The orthorhombic phase of FeAlO₃ is piezoelectric, magnetoelectric and ferrimagnetic at low temperature (Macdonald, Gard & Glasser, 1967; Shieber, Frankel, Blum & Foner, 1967; Trooster & Dymanus, 1967; Mackenzie & Brown, 1984). High-field magnetization measurements on FeAlO₃ polycrystalline samples (Devaux, Rousset, Broto, Rakoto & Askenazy, 1990) show an extremely high magnetic anisotropy since at temperatures down to 4.2 K and in pulsed magnetic fields up to 37 T, the magnetic saturation of these samples is not reached. We have used neutron diffraction data obtained from FeAlO₃ powdered samples prepared in a high state of purity by new production methods (Devaux *et al.*, 1990) for determining the crystal (at T = 298 K) and magnetic (at T = 30 K) structures. We discuss the electric and magnetic properties of this crystal in terms of the packing of oxygen ions, cation distribution and magnetic interactions. A comparison is made with the isomorphous gallium iron oxide FeGaO₃.

2. Experimental and crystal data

The mixed oxalate precursor $(NH_4)_3[Fe_{0.5}Al_{0.5}(C_2O_4)_3]$ was prepared by coprecipitation from alcoholic medium. It was decomposed at 673 K and the resulting oxide solid solution was rapidly heated to 1653 K. After 2 h at this temperature, the specimen was quenched, giving rise to pure FeAlO₃, no other phase being detected by Xray and electron diffraction. Neutron powder diffraction data* were collected at room temperature and at T =30 K using the high-resolution diffractometer 3T2 at the Orphée reactor at the Laboratoire Léon Brillouin (Saclay, France). Full experimental conditions are reported in Table 1.

3. Refinement of the room-temperature structure

The structural scattering lengths used in the refinement were $b_{\text{Fe}} = 9.45$, $b_{\text{Al}} = 3.449$, $b_{\text{O}} = 5.803$ fm. The space group is $Pna2_1$; Z = 8. The initial atomic coordinates of the four independent heavy atoms and of the six independent O atoms were those proposed

^{*} The numbered intensity of each measured point on the profile has been deposited with the IUCr (Reference: BR0041). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

Table 1. Experimental details

30 K

AlFeO₃

298 K

AlFeO₂

Table 2. Final positional and displacement parameters, and occupancy factors of FeAlO₃ at room temperature and at T = 30 K, and magnetic moments at T = 30 K

f = fraction of iron at the lattice sites; M = magnetic moment per iron ion.

Chemical formula weight	130.83	130.83	ion.				•	-
Cell setting	Orthorhombic	Orthorhombic						° •
Space group	$Pna2_1$	Pna2 ₁	Site	T (K)	x	у	Z	$B_{\rm iso}$ (A ²)
a (Å)	4.9839 (1)	4.9792 (1)	Fe1	300	0.1850 (7)	0.1518 (4)	0.5827 (5)	0.20 (6)
b (Å)	8.5544 (2)	8.5466 (2)	Fe1	30	0.1850 (7)	0.1525 (4)	0.5822 (5)	0.09 (9)
c (Å)	9.2413 (2)	9.2345 (2)	Fe2	300	0.6731 (7)	0.0334 (3)	0.7982 (5)	0.38 (6)
V (Å ³)	394	393	Fe2	30	0.6725 (7)	0.0330 (3)	0.7981 (6)	0.14 (8)
Z	8	8	All	300	0.1729 (12)	0.1528 (8)	0.0000 (0)	0.56 (10)
$D_x ({\rm Mg}{\rm m}^{-3})$	4.411	4.423	A11	30	0.1727 (12)	0.1528 (8)	0.0000 (0)	0.36 (11)
Radiation type	Neutron	Neutron	Al2	300	0.8155 (10)	0.1600 (6)	0.3035 (7)	0.60 (9)
Wavelength (Å)	1.2268	1.2268	Al2	30	0.8132 (11)	0.1602 (6)	0.3037 (7)	0.25 (10)
θ range (°)	6-109	6-109	01	300	0.9822 (9)	0.3230 (5)	0.4211 (7)	0.58 (2)
$\mu (mm^{-1})$	0.003	0.003	01	30	0.9838 (10)	0.3228 (5)	0.4213 (7)	0.40 (2)
Temperature (K)	298	30	O2	300	0.5101 (9)	0.4911 (6)	0.4294 (8)	0.58 (2)
			O2	30	0.5085 (9)	0.4902 (6)	0.4303 (8)	0.40 (2)
Data Collection			O3	300	0.6581 (12)	1.0019 (5)	0.2005 (7)	0.58 (2)
Diffractometer	3T2 LLB Saclay	3T2 LLB Saclay	O3	30	0.6589 (12)	1.0021 (5)	0.2002 (7)) 0.40 (2)
Sample container	Vanadium holder	Vanadium holder	O4	300	0.1555 (13)	0.1629 (5)	0.1948 (6)	0.58 (2)
Monochromator	Ge_335	Ge 335	O4	30	0.1548 (14)	0.1636 (5)	0.1944 (7)) 0.40 (2)
Instrument geometry	20 ³ He detectors	20 ³ He detectors	O5	300	0.8451 (12)	0.1683 (6)	0.6727 (7)) 0.58 (2)
$\theta_{\rm max}$ (°)	109	109	O5	30	0.8436 (13)	0.1686 (6)	0.6722 (8)) 0.40 (2)
2θ step (°)	0.05	0.05	O6	300	0.5089 (12)	0.1727 (6)	0.9409 (7) 0.58 (2)
			O6	30	0.5091 (13)	0.1728 (6)	0.9404 (7) 0.40 (2)
Refinement								
Background	Polynomial function	Polynomial function	Occ	upancy	Occupar	ncy		
R	0.0317	0.0352	ь	y Fe	by Al	I Mf	(μ_B)	$M(\mu_B)$
wR	0.0416	0.0473	0.7	77 (13)	0.223 (1	3)		
Rexp	0.0233	0.0252	0.8	03 (30)	0.197 (3	30) –2.	59 (22)	-3.23 (30)
$R_I = \Sigma (I_i - I_{ci}) / \Sigma I_i$	0.0358	0.0274	0.7	54 (12)	0.236 (1	2)		
Magnetic R factor	-	0.0778	0.7	51 (22)	0.249 (2	22) +2.	68 (19)	+3.57 (27)
x ²	3.04	3.53	0.0	95 (9)	0.905 (9))		
No. of parameters used	50	54	0.1	05 (11)	0.895 (1	1) -0.	36 (10)	-3.43 (103)
Weighting scheme	$w_i = 1/\sigma_i^2, \sigma_i^2 = y_i$	$w_i = 1/\sigma_i^2, \sigma_i^2 = y_i$	0.3	40 (12)	0.660 (1	2)		
Full width at half-maximum	$u \tan^{\circ} \theta + v \tan \theta + w$	$u \tan^2 \theta + v \tan \theta + w$	0.3	10 (15)	0.690 (1	(5) +1.	.00 (13)	+3.23 (45)
Analytic function for profile	Gaussian shape	Gaussian shape						
$(\Delta / \sigma)_{\rm max}$	0.070	0.070						

Computer programs Cell refinement

Fullprof (Rodriguez-Carvajal, 1990) *Fullprof* (Rodriguez-Carvajal, 1990)

The final atomic coordinates after isotropic refinement are shown in Table 2. In Fig. 1(a) a comparison of the experimental and calculated neutron diffraction data is presented. A representation of the structure projected along **a** is given in Fig. 2.

for the isostructural FeGaO₃ in the precedent studies (Abrahams, Reddy & Bernstein, 1965; Bertaut, Bassi, Buisson, Chappert, Delapalme, Pauthenet, Rebouillat & Aleonard, 1966). Then all positional parameters (except z of Al1 = 0), isotropic temperature factors (imposing the same value for all O atoms) and the occupancy factors for the heavy atoms were varied. The other variable parameters were an overall scale factor, usual u, v and w parameters (defined in Table 1), an asymmetry parameter determining the shape of the Bragg peaks and the zero point for the Bragg angles. The *R* factors converged quickly to Rp = 0.0317 and Rwp = 0.0416. The strongest correlations (0.96) occurred between the occupancy and temperature factor of Fe1 and the *z* coordinate and temperature factor of the same atom.

Anisotropic thermal motion refinement was then allowed for the heavy atoms, retaining isotropic temperature factors for the O atoms. No significant improvement was noted. Nor was any improvement found by allowing anisotropic thermal motion for only Al2, the atom exhibiting the largest thermal motion.

4. Oxygen packing, occupancy factors, polyhedral sharing and characteristic temperature

As in FeGaO₃, the structure of FeAlO₃ can be described as a double hexagonal (hc) close-packed array of oxygen ions (Fig. 3), *i.e.* a combination of hexagonal and cubic close packing: the repeat of the layers along z is in the form *ABCB...ABCB*, where *ABC* designates cubic close packing, each oxygen layer consisting of a pseudohexagonal array. The heavy atoms also lie in four layers along z, alternating with oxygen layers, the Fe1-Al1 layers being very puckered (Fig. 2).

There are four different cation sites labelled Fe1, Fe2, Al1 and Al2, the occupation factors permitting the iron sites to be occupied to a smaller extent by aluminium and the aluminium sites by iron. The oxygen environment of Al1 forms an almost regular tetrahedron. The three other sites have a distorted octahedral environment, especially

Crystal data

Chemical formula

the oxygen environment of Fe1 and Fe2 is very irregular (Table 3). The distribution of iron ions over the cation sites has been determined accurately. If f_1 , f_2 , f_3 and f_4 are the fractions of iron ions at the lattice sites Fe1, Fe2, All and Al2, respectively, the total occupancy of each site being constrained to be 1.0, the values of f_i are: $f_1 = 0.78 (0.01)$, $f_2 = 0.76 (0.01)$, $f_3 = 0.10 (0.01)$ and $f_4 = 0.34 (0.01)$.

This distribution corresponds to the formula $Fe_{0.99}Al_{1.01}O_3$, showing no significant departure from the nominal composition FeAlO₃. These results confirm the structural features deduced from the Mössbauer spectrum by Mackenzie & Brown (1984), who conclude that iron occupies both octahedral and tetrahedral sites and that ~10% of the tetrahedral sites (Al1 sites) are occupied by Fe³⁺, the remainder being occupied by Al³⁺.

Fig. 1. Diffractometer patterns of FeAlO₃, showing comparison between experimental and calculated data: (a) T = 298 and (b) T = 30 K.

The large difference between octahedral radii of Fe^{3+} and Al^{3+} ions, 0.645 and 0.535 Å, respectively (Shannon, 1976), together with disorder in the occupation of cation sites, especially for octahedral sites, leads to a local deformation of the lattice.

There are six crystallographically different oxygen ions in the FeAlO₃ structure, denoted O1–O6 (Fig. 2). They can be divided into two groups:

Type I: O3, O5 and O6 each have only three cations as nearest neighbours.

Fig. 2. Structure of FeAlO₃ projected along a.

Fig. 3. O-atom array, projected along c. Hexagons have been drawn for each layer, corresponding to *ABCB* packing; A: solid line (z = 0.18), B: broken line (z = 0.43), C: mixed line (z = 0.68), B: dotted line (z = 0.93).

Type II: O1, O2 and O4 have four or five (O1) nearest-neighbour cations.

The bond lengths of type II oxygens (O_{II}) with the cations at the Fe1 and Fe2 sites are larger (2.02 < d < 2.32 Å) than the bond lengths of type I oxygens O_I (1.85 < d < 1.96 Å). At the Fe1 and Fe2 sites the O_I—Fe—O_I angles are larger ($93.1 < \alpha < 103.7^{\circ}$) than the O_{II}—Fe—O_{II} angles ($74.5 < \alpha < 82.6$; Table 3).

Sharing of edges between octahedra is shown in Table 4 and will be discussed with the magnetic structure. The Al1 tetrahedron shares O atoms only at the corners, no edge sharing occurs between tetrahedra and octahedra.

The characteristic temperature θ of aluminium iron oxide may be computed using the expression $B = (6h^2/mkTx^2)(\Phi(x) + x/4)$, where *h* is Planck's constant, *k* Boltzmann's constant, $x = \theta/T$, $m = 4.34 \times 10^{-23}$ g atom⁻¹ is the average mass of an atom in the unit cell, B = 0.521 Å² is the average thermal parameter at T = 300 K and $\Phi(x) = (1/x)[\int_0^x y \, dy/(e^y - 1)]$. $\theta =$ 521 K in FeAlO₃, which can be compared with $\theta =$ 534 K in FeGaO₃ (Abrahams *et al.*, 1965). However, it must be noted that the *B* factor of each atomic site contains contributions from both thermal motion and static structural disorder, the latter being introduced by the large difference in ionic radii of Fe³⁺ and Al³⁺. Consequently, θ is probably underestimated.

5. Structure and piezoelectricity

It has been proposed in the case of $Fe_{1.15}Ga_{0.85}O_3$ (Abrahams *et al.*, 1965) that the piezoelectric effect originates in the bond arrangement of the metal atoms located on the tetrahedral sites in the cell; this bond arrangement being analogous to that in the classical example of zinc sulfide. The same bond disposition is found in FeAIO₃, one of the tetrahedral bonds (Al1—O4) being parallel, or almost so (at $\pm 4^\circ$), to the polar *c* axis, which is the largest axis (Fig. 2). Pressure along the *c* axis causes a compression in the Al1—O4 bonds and for the remaining three Al1—O bonds alters their angle with the polar axis, inducing a polarization.

6. The magnetic structure (T = 30 K)

FeAlO₃ undergoes a ferrimagnetic phase transition at $T_c \simeq 280$ K. We have determined the FeAlO₃ magnetic structure at low temperature from neutron powder diffraction at T = 30 K. The magnetic unit cell is identical to the chemical one (orthorhombic space group $Pna2_1$). Compared with room-temperature refinements, four new parameters are added, giving the magnetic moments f_iM_i on each metal site (f_i iron occupancy factor, M_i moment per iron atom). The best fit between observed and calculated magnetic intensities (Rietveld profile refinement of the T = 30 K neutron powder

Table 3. Distances (Å) and angles (°) in the octahedra centred on Fe1, Fe2 or Al2 and in the tetrahedra centred on Al1

The Fe—O(*i*) or Al—O(*i*) distances are on the diagonal, above it are the O(*i*)—O(*j*) distances and under it are O(*i*)—Fe—O(*j*) or O(*i*)—Al—O(*j*) angles

Fel

Average Fe1—O(i) distance: 2.032(3)Å; average deviation: 0.135(3)Å

Average ~ 180° O(*i*)—Fe1—O(*j*) angle: 164.7 (2)°; average deviation: 15.3 (2)°

Average $\sim 90^{\circ} \text{ O}(i) - \text{Fe1} - \text{O}(j)$ angle: 89.4 (1)°; average deviation: 8.0 (1)°

O3 ⁱ	O5 ⁱⁱ	O5 ⁱⁱⁱ	O2 ⁱⁱⁱ	O1 ⁱⁱⁱ	O1 ⁱⁱ
1.878 (7)	2.884 (8)	2.866 (7)	3.003 (9)	3.082 (8)	4.197 (8)
99.8 (3)	1.892 (7)	2.857 (8)	2.755 (9)	3.936 (8)	2.761 (8)
97.9 (3)	97.0 (3)	1.922 (7)	3.933 (8)	2.761 (8)	2.947 (9)
99.1 (3)	88.1 (3)	161.1 (4)	2.064 (8)	2.759 (6)	2.692 (7)
100.9 (3)	158.4 (3)	86.2 (3)	82.6 (3)	2.114 (7)	2.788 (7)
174.6 (3)	81.1 (3)	87.4 (3)	75.4 (2)	77.7 (2)	2.323 (7)
	O3 ⁱ 1.878 (7) 99.8 (3) 97.9 (3) 99.1 (3) 100.9 (3) 174.6 (3)	$\begin{array}{c cccc} O3^1 & O5^{ii} \\ 1.878 & (7) & 2.884 & (8) \\ 99.8 & (3) & 1.892 & (7) \\ 97.9 & (3) & 97.0 & (3) \\ 99.1 & (3) & 88.1 & (3) \\ 100.9 & (3) & 158.4 & (3) \\ 174.6 & (3) & 81.1 & (3) \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Fe2

Average $Fe2-O(i)$	distance:	2.018(3)Å;	average	deviation:
0.115 (3) Å			-	

Average ~ 180° O(*i*)—Fe2—O(*j*) angle: $162.6(2)^{\circ}$; average deviation: $17.4(2)^{\circ}$

Average ~ 90° O(i)—Fe2—O(j) angle: 89.4 (1)°; average deviation: 7.2 (1)°

Fe2	05	O 3 ⁱ	O6	O2 ^{iv}	O4 ^v	O1 ^{iv}
O5	1.847 (7)	2.912 (8)	2.992 (9)	2.906 (9)	2.841 (7)	4.081 (8)
O3	101.8 (3)	1.905 (7)	2.803 (9)	3.861 (8)	2.859 (8)	2.677 (8)
O6	103.7 (3)	93.1 (3)	1.956 (7)	2.858 (7)	4.026 (8)	2.997 (7)
O2	97.2 (3)	158.7 (3)	91.8 (3)	2.023 (7)	2.638 (9)	2.759 (6)
O4	91.4 (3)	90.6 (3)	163.3 (3)	79.2 (3)	2.112 (6)	2.653 (8)
01	165.9 (3)	79.4 (2)	90.2 (3)	79.9 (2)	74.5 (2)	2.264 (6)

Al1

Average Al1—O(i) distance: 1.785(4)Å; average deviation: 0.010(4)Å

Average $\sim 109.47^{\circ}$ O(*i*)—Al1—O(*j*) angle: 109.3 (2)°; average deviation: 3.7 (2)°

Al1	O6 ^{vi}	O2 ^{vii}	O6 ^{viii}	04
O6	1.770 (8)	3.019 (7)	2.821 (8)	2.935 (9)
02	116.6 (4)	1.780 (8)	2.879 (7)	2.976 (9)
06	105.0 (4)	107.6 (4)	1.787 (8)	2.832 (8)
O4	110.4 (4)	112.2 (4)	104.1 (4)	1.805 (6)

Al2

Average Al2—O(i) distance: 1.953(3)Å; average deviation: 0.041(3)Å

Average ~ 180° O(*i*)—Al2—O(*j*) angle: 174.2 (2)°; average deviation: 5.8 (2)°

Average ~ 90° O(*i*)—Al2—O(*j*) angle: 89.9 (1)°; average deviation: 4.7 (1)°

Al2	O3 ^{ix}	O1	O4 ^x	O4 ^{xi}	O1 ⁱⁱⁱ	O2 ^{xi}	
O3	1.830 (8)	3.783 (7)	2.836 (8)	2.868 (6)	2.677 (8)	2.749 (9)	
01	177.5 (4)	1.954 (7)	2.645 (8)	2.663 (8)	2.788 (7)	2.692 (7)	
04	96.5 (4)	84.8 (3)	1.970 (8)	2.904 (9)	3.955 (8)	2.638 (9)	
O4	97.4 (4)	84.7 (3)	94.5 (3)	1.985 (7)	2.645 (8)	3.963 (8)	
01	88.9 (3)	90.0 (3)	174.5 (4)	83.4 (3)	1.990 (8)	2.999 (6)	
02	91.9 (3)	86.1 (3)	83.5 (3)	170.6 (4)	97.7 (3)	1.992 (8)	

Symmetry codes: (i) $1 - x, 1 - y, z + \frac{1}{2}$; (ii) x - 1, y, z; (iii) $x - \frac{1}{2}, \frac{1}{2} - y, z$; (iv) $\frac{3}{2} - x, y - \frac{1}{2}, z + \frac{1}{2}$; (v) $1 - x, -y, z + \frac{1}{2}$; (vi) x, y, z - 1; (vii) $\frac{1}{2} - x, y - \frac{1}{2}, z - \frac{1}{2}$; (viii) $x - \frac{1}{2}, \frac{1}{2} - y, z - 1$; (ix) x, y - 1, z; (x) x + 1, y, z; (xi) $x + \frac{1}{2}, \frac{1}{2} - y, z$. The table gives the distances (Å) between cations in octahedra sharing a common edge. There is no particular rule for the relative orientation of the moments of these cations, the $\sim 90^{\circ}$ cation-anion-cation magnetic interactions being weak.

Octahedra	Edges shared Total number		Fe1 5		Fe2 4		A12 7
Fel	5	2 edges shared	3.005 (5)	1 edge shared	3.150 (6)	2 edges shared	3.110 (8)
	•	with Fe1	3.005 (5)	with Fe2		with Al2	3.171 (7)
Fe2	4	1 edge shared	3.150 (6)			3 edges shared	2.944 (6)
		with Fe1				with Al2	3.196 (6)
							3.039 (6)
A12	7	2 edges shared	3.110 (8)	3 edges shared	2.944 (6)	2 edges shared	2.930 (7)
		with Fe1	3.171 (7)	with Fe2	3.196 (6)	with Al2	2.930 (7)
					3.039 (6)		

diffraction data; Fig. 1b) is obtained for a collinear ferrimagnetic structure, with Fe³⁺ magnetic moments respectively parallel and antiparallel to a, the shortest axis of the crystal structure. All Fe^{3+} ions on a 4(a) site have the same magnetic moment, within standard deviations (M_1 for Fe1, M_2 for Fe2, M_3 for Fe³⁺ in the All site and M_4 for Fe³⁺ in the Al2 site), the algebraic values of $f_i M_i$ (sequence + - + -) being given in Table 2. This magnetic structure, analogous to the magnetic structure of $Fe_{1,15}Ga_{0.85}O_3$ (Bertaut et al., 1966), is mainly determined by the strong '180° cation-anion-cation' superexchange antiferromagnetic interactions (Goodenough, 1966) Fe1-O1-Fe2 and Fe1-O1-Al2, Al2 designating a site occupied by 0.31 Fe (see Table 5; Fig. 4). This table gives Fe^{3+} — O^{2-} — Fe^{3+} angles larger than 115° for cations sharing a common corner of their oxygen coordination polyhedra: the Fe³⁺ on each side have opposite magnetic moments, except the lowest value of the angle. Fe³⁺ cations

Table 5. Corner sharing between polyhedra

The table gives the metal-anion-metal angles larger than 115° in decreasing order. α is the angle A - O - B. Due to the strong '180° cation-anion-cation' superexchange antiferromagnetic interactions, the Fe³⁺ cations A and B have their spins oppositely oriented, except for the smallest angle of the list.

α (°)
166.4 (3)
164.3 (3)
130.2 (3)
129.8 (4)
125.4 (4)
123.3 (4)
123.0 (4)
121.6 (4)
121.6 (3)
121.4 (4)
118.7 (3)
117.9 (3)
115.2 (4)

sharing a common edge of their oxygen coordination polyhedra (see Table 4) are not so strongly magnetically correlated, ' $\simeq 90^{\circ}$ Fe³⁺-O²⁻-Fe³⁺' superexchange magnetic interactions being weak (Goodenough, 1966).

The T = 30 K refined parameters are given in Table 2. The occupation numbers f_i are identical at 30 and 300 K (within standard deviations). The mean Fe³⁺ magnetic moment at T = 30 K is $3.4 \pm 0.3 \mu_B$, a value lower than expected $(g_J J = 5 \mu_B)$: this is probably due to the chemical disorder on the cations sites, magnetic linkages between Fe³⁺ ions being randomly disrupted by non-magnetic Al³⁺ ions. The spontaneous magnetization deduced from the T = 30 K neutron powder diffraction data (Table 2) is parallel to **a** and equal to 0.38 \pm 0.17 μ_B /Fe³⁺, in agreement with the 0.4 μ_B magnetization measurement of Devaux *et al.* (1990).

References

- Abrahams, S. C., Reddy, J. M. & Bernstein, J. L. (1965). J. Chem. Phys. 42, 3957-3970.
- Bertaut, E. F., Bassi, G., Buisson, G., Chappert, J., Delapalme, A., Pauthenet, R., Rebouillat, H. P. & Aleonard, R. (1966). J. Phys. 27, 433-448.

221

Fig. 4. The '~180° cation-anion-cation' antiferromagnetic interactions Fe1—O—Fe2 (166°) and Fe1— O—Al2 (164°). Al2 is a site occupied by 0.3 Fe.

- Devaux, X., Rousset, A., Broto, J. M., Rakoto, H. & Askenazy, S. (1990). J. Mat. Sci. Lett. 9, 371-372.
- Goodenough, J. B. (1966). *Magnetism and the Chemical Bond*, edited by F. A. Cotton, pp. 168–180. New York: John Wiley & Sons.
- Macdonald, J., Gard, J. A. & Glasser, F. P. (1967). J. Inorg. Nucl. Chem. 29, 661-671.
- Mackenzie, K. J. D. & Brown, I. W. M. (1984). J. Mat. Sci. Lett. 3, 159-161.
- Rodriguez-Carvajal, J. (1990). Fullprof. A Program for Rietveld Refinement and Pattern Matching Analysis. Abstracts of the Satellite Meeting on Powder Diffraction of the XV Congress of the IUCr, p. 127.
- Shannon, R. D. (1976). Acta Cryst. A32, 751-767.
- Shieber, M., Frankel, R. B., Blum, N. A. & Foner, S. (1967). J. Appl. Phys. 38, 1282-1283.
- Trooster, J. M. & Dymanus, A. (1967). Phys. Status Solidi, 24, 487-499.